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Abstract

Graphs are a widely used structure for knowl-
edge representation. Their uses range from bio-
chemical to biomedical applications and are re-
cently involved in multi-omics analyses. A key
computational task regarding graphs is the search
of specific topologies contained in them. The
task is known to be NP-complete, thus indexing
techniques are applied for dealing with its com-
plexity. In particular, techniques exploiting paths
extracted from graphs have shown good perfor-
mances in terms of time requirements, but they
still suffer because of the relatively large size of
the produced index. We applied decision dia-
grams (DDs) as index data structure showing a
good reduction in the indexing size with respect
to other approaches. Nevertheless, the size of a
DD is dependent on its variable order. Because
the search of an optimal order is an NP-complete
task, variable order heuristics on DDs are applied
by exploiting domain-specific information. Here,
we propose a heuristic based on the information
content of the labeled paths. Tests on well-studied
biological benchmarks, which are an essential part
of multi-omics graphs, show that the resultant size
correlates with the information measure related to
the paths and that the chosen order allows to ef-
fectively reduce the index size.
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1 Introduction

Graphs are mathematical objects used to represent items,
also called vertices, and relations between them. In the
bioinformatics context, they are exploited to express rela-
tionships at any biochemical, biological, and medical level.
For example, graphs can represent physical molecule struc-
ture by expressing chemical bonds among atoms [Tri18].
At the cellular system level, graphs are instead applied
to represent biological actors, such as genes, proteins, or
RNAs, and their relations, such as physical interactions or
causal inference [HPRL08, DL05, BDCC+18]. Differently,
in medical applications, graphs are exploited in decision
support systems to connect patient data with disease states
and treatments [XWJF19]. For what concerns integration
and analysis of multi-omics data, graphs are becoming pop-
ular for integrating biomedical information with data re-
garding multiple omics. In such a model, items compose
a heterogeneous set of biological and meta-biological ob-
jects. Graphs of genetic interactions are enriched by em-
bedding their relationship with diseases, drugs, anatomic
phenotypes, biological functions, or cellular localization.
Then, multi-omics data linked to the genetic actors are inte-
grated. The result is a knowledge base that can be exploited
for drug repurposing, for prioritizing disease-associated
genes, or for patient classification and biomarker identifi-
cation [HB15, FWY+21, WSH+21].

Among the computational tasks that can be performed
on top of such structures, the search of specific topologies
within biological graphs is one of the most challenging
problems. In particular, the subgraph isomorphism prob-
lem is known to be NP-complete [Coo71]. In this con-
text, indexing of labeled graphs is a widely used technique
for dealing with such complexity. In fact, it provides a
good compromise between precision in filtering unmatch-
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ing parts of the graphs and time to compute such an opera-
tion [LVCF21, GBB+13]. Practically, indexing approaches
store topological features, ranging from paths to frequent
substructures, in order to provide a fast pruning of the la-
beled graphs or parts of them that do not contain the queried
topology. However, this kind of approaches may lead to
relatively large indexes, that can compromise performance.

Recently, Decision Diagrams (DDs) have successfully
been applied for reducing the indexing size [LBBG21].
In fact, DDs are particularly efficient for detecting com-
mon portions among the paths and storing efficiently them.
Their efficiency is known to be strongly affected by the
ordering of variables describing a path: a good ordering
can substantially reduce the memory consumption and the
execution time to generate and encode the indexing. Un-
fortunately, discovering the optimal variable ordering is
known to be NP-complete [BW96a]. Thus, various heuris-
tics depending on the specific application field for the se-
lection of (sub)optimal orderings were proposed in the lit-
erature [FFM93].

Starting from this observation, in this paper, we extend
the results presented in [LBBG21] by investigating how
the variable ordering may affect the performance of such
an approach in terms of memory consumption. This task
was carried out by first proposing a new metric called Sum
of Entropies (SOE), which experimentally highlighted a
medium-to-strong anti-correlation value with respect to the
final size of the DD encoding the indexing. Then, the met-
ric was exploited as starting point to derive a sub-optimal
heuristic EntropyHeu that finds a variable order greedily
by optimizing the SOE metric.

In detail, Section 2 introduces the concepts of indexing
of labeled graphs and DDs. Moreover, the section recalls
how DD can be efficiently exploited for encoding graph
indexing and we discuss how its efficiency is strongly af-
fected by the choice of a “reasonably good” variable order.

In Section 3, the new metric SOE and the derived new
heuristic are formally introduced.

Then, the effectiveness of the new heuristic is assessed
in Section 4 reporting its performance on a set of well-
known biological benchmarks. Finally, Section 5 con-
cludes the paper.

2 Background

In this section, we firstly introduce the concepts of graphs,
labeled paths and path-based graph indexing. Then, the
Multi-Terminal Multi-way Decision Diagrams (MTMDDs)
are introduced as an efficient data structure to encode and
manipulate a set of paths with their occurrences. Finally,
we describe GRAPES-DD, a tool using MTMDDs for ef-
fective searching in graphs.

2.1 Graphs and paths as indexing features

Formally, a graph is a pair G = (V, E) where V is the set
of vertices and E : V × V is the set of relations, also called
edges. Given a set of labels Σ, labeled graphs are enriched
with a function fσ : Σ 7→ V which maps each vertex to a
label in Σ. The same label can be associated with different
vertices. A path p of length l is a vector (vp

1 , v
p
2 , . . . , v

p
l ) such

that vp
i ∈ V , for 1 ≤ i ≤ l, and (vp

i , v
p
i+1) ∈ E, for 1 ≤ i < l.

A labeled path p̂ is obtained by mapping the vertices of a
path to their corresponding labels via the fσ function, thus
p̂ = ( fσ(vp

1 ), fσ(vp
2 ), . . . , fσ(vp

l )) = (σp
1 , σ

p
2 , . . . , σ

p
l ).

Given a query graph GQ = (VQ, EQ) and a target graph
GT (VT , ET ), the subgraph isomorphism problem consists
in finding the occurrences of GQ within GT . An occurrence
is a mapping m : VQ 7→ VT , thus between the vertices
of VQ and the vertices in VT , which preserves label com-
patibility and graph topology. Label compatibility ensures
that, for each v ∈ VQ, fσ(m(v)) = m(v). Topology com-
patibility is ensured by asserting that, for each (u, v) ∈ EQ,
(m(u),m(v)) ∈ ET . The search space of the problem is at
most O(VQ

VT ), because each possible combination of as-
signment of a target vertex to a query vertex must be ex-
plored and verified. However, several techniques can be
used to reduce the search space by avoiding visiting the
unfeasible parts of it. One of these techniques consists in
extracting features of graph vertices for computing com-
patibility between target and query vertices. Features of a
target graph are thus extracted and stored in an index with
the aim of reusing it for multiple queries. A key property
of indexes is the costs for building and querying them, as
well as the size they require in memory [Din17].

In particular path-based indexing uses labeled paths as
features that describe the topological neighborhood of a
vertex. According to this, labeled paths are stored together
with the identifier of their starting vertex [GS02].

In this way, a set of target vertices to be candidates to
match to a given query vertex v can efficiently be retrieved.
All labeled paths starting from v are extracted, then the
set of target vertices that are starting points of the same
labeled paths in the index are retrieved. After such a fil-
tering phase,all the exact occurrences are retrieved by a
subgraph isomorphism solver, such as VF2 [CFSV01] or
RI [BGP+13]. Because the number of paths can exponen-
tially grow on increasing their length, a maximum length is
usually set for the paths stored.

2.2 Decision diagrams in a nutshell.

Decision diagrams (DDs) are a family of data structures
proposed to encode and manipulate a set of values effi-
ciently. Multi-Terminal Multi-way Decision Diagram (MT-
MDD) is a type of DD that can be effectively exploited
to encode the function counting the occurrences of an el-
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ement into a multiset1, where elements are tuples with for-
mat 〈v1, . . . , vn〉 with vi ∈ N . Let O : N → [1 . . . n]
be a bijective variable ordering function that assigns a
unique DD level in [1 . . . n] to each encoded variable. For-
mally, an MTMDD is a rooted directed acyclic graph or-
dered by O, where the first n levels represent the variables
〈O(v1), . . . ,O(vn)〉 of the encoded tuple, and the terminal
level the number of occurrences of each tuple in the multi-
set. Let us count the levels of an MTMDD in a bottom-up
fashion, so that the first level is above the terminal one and
the root node is at n-th level.

The high storage efficiency of DDs is strongly condi-
tioned by the choice of a “reasonably good” variable or-
der, i.e. the assignment of the problem variables to the DD
levels. It is known [BW96b] that finding the optimal order
is a NP-complete problem. Some heuristics exist to help
searching at least sub-optimal orders [FFM93], but these al-
gorithms typically use problem-specific information. How-
ever, to the best of our knowledge, no such heuristic is cur-
rently available for reordering the variables of DDs encod-
ing biological graph databases.

2.3 GRAPES-DD: a tool using Decision Diagrams for
searching in graphs.

In [LBBG21] we proposed a new version of GRAPES, a
path-based graph indexing tool [GBB+13], which exploits
the decision diagram (i.e MTMDD) to achieve a substantial
reduction of the memory footprint of the index graphs. The
goal was reached thanks to DD ability to efficiently handle
the presence of similar patterns in the indexed graph paths.

Roughly speaking the GRAPES-DD workflow is com-
posed of three main phases: (1) the index building phase in
which MTMDD indexing the set of target graphs is cre-
ated by extracting all the labeled paths up to length lp,
(2) the filtering phase in which, given a query graph, the
set of target graphs is restricted to those subgraphs poten-
tially containing the query, and (3) the verification phase
in which subgraph isomorphism algorithm (i.e. VF2 algo-
rithm [CFSV01] or RI [BGP+13]) is applied only on the
subset of candidate targets.

3 Methods
In this section, after introducing the GRAPES-DD strat-
egy, we focus on the formal definition of a new sub-
optimal heuristic inspired to decision tree learning in ma-
chine learning [Qui86].

GRAPES-DD exploits an MTMDD with n variables:
n − 1 variables vi, i = 1, . . . , n − 1 encoding the paths’ i-
th label; and vn encoding the identifier of the starting node
of the labeled path. Note that vn and the vi, 1 ≤ i < n, are
different because they belongs to different domain spaces

1Multiset extends the concept of a set allowing for multiple instances
for each of its elements.

1: function EntropyHeu
2: O← EntropyHeuLabels()
3: minSize← ∞
4: for i← [1 . . . n] do
5: O′ ← InsertAt(O, {vn 7→ i})
6: DD′ ← BuildDD(O′)
7: if SizeDD(DD′) < minS ize then
8: minSize← SizeDD(DD′)
9: O∗ ← O′

10: return O∗

11: function EntropyHeuLabels
12: U ← {v1 . . . vn−1}

13: O← {}
14: for i from 1 to n − 1 do
15: vsel ← null
16: Hsel ← −∞

17: for v′ ∈ U do:
18: U′ ←U \ {v′}
19: H′ ← Entropy(U′)
20: if H′ > Hsel then
21: vsel ← v′

22: Hsel ← H′

23: U ← U \ {vsel}

24: O← Append(O, {vsel 7→ i})
25: return O

Algorithm 1: Variable ordering selection heuristic

(graph vertices and labels, resp.) with largely different do-
main cardinalities. Given a fixed position vn 7→ k for the vn

variable, we define the stratum k as the subset of variable
orders {O}k sharing the fixed position for vn. We shall see
that the strata show significant clustering of the results in
Section 4.

Each tuple x = 〈v1 . . . vn〉 has an associated integer mul-
tiplicity mult(x). Let X be the multiset of all the encoded
tuples x. Given a multiset X, let H(X) be the entropy of X,
defined according to the standard definition [Sha01]

H(X) = −
∑
x∈X

p(x) log2 p(x), with: p(x) =
mult(x)∑

x′∈X
mult(x′)

(1)
Let U ⊆ N be a subset of the problem’s variables. Let

x′ = x/U be a new tuple x′ obtained from a tuple x by
removing all the variables not in U. Let X/U be the pro-
jection of the multiset X over the sole variablesU, with

mult(x′) =
∑

x∈X, x′=x/U

mult(x) (2)

the multiplicity of each tuple x′.
Given a variable order O = {k1 . . . kn}, we define the i-th

variable subsetUO,i as the set of the first i variable indices
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of O. We define the SOE metric for a variable order O as

SOE(O) =

n∑
i=1

H
(
X/UO,i

)
(3)

Research question R1: The size of the MTMDD (i.e. the
sum of its nodes and edges) correlates with the SOE func-
tion. To test this hypothesis, we construct the MTMDD for
all the variable orders (which is factorial in the number n
of variables), and compute a correlation score between the
value (3) and the final MTMDD size.

Unfortunately, finding the optimal MTMDD by con-
structing all the permutations is not feasible in practice, ex-
cept for a limited number of encoded variables. Therefore,
to make the technique broadly applicable in a real world
context, we define a sub-optimal heuristic EntropyHeu that
searches a variable order O∗ by applying a greedy optimiza-
tion the local entropy sum at every projection step i.

The pseudo-code of EntropyHeu is shown in Algo-
rithm 1. The function EntropyHeu first computes the or-
dering for the {v1 . . . vn−1} label variables. It then tries to
insert the identifier variable vn in all the positions, returning
the order O∗ that minimizes the final DD size. The function
EntropyHeuLabels is the core heuristic algorithm, per-
forming the greedy search. It starts by defining an empty
variable order O and by taking into account the full set of
label variables U. At each outer iteration (lines 14-23), a
variable vsel ∈ U is removed and assigned to position i in
the order O. The variable vsel is chosen to be the one that
maximizes the entropy given by the remaining set of vari-
ablesU \ {vsel}, namely:

vsel = arg max
v∈U

H(U \ v) (4)

We assume that BuildDD(O) generates the MTMDD
for the projected variables subset with order O, and
Entropy(U) computes (1) on the projected multiset X/U.
Research question R2: The function EntropyHeu se-
lects reasonably good variable orders, comparable with the
theoretical-optimal order derived by the SOE metric.

In the next section, results are analysed to find answers
to the research questions R1 and R2.

4 Results
We empirically tested our two research questions R1 and
R2 using a set of well-known biological benchmarks, de-
scribed hereafter. The first 5 benchmarks are protein-
protein interaction (PPI) networks of 5 different species:
Caenorhabditis elegants (CE), Drosophila melanogaster
(DROSOFILA), Homo sapiens (HOMO), Mus musculus
(MUS) and Saccaromyces cerevisae (YEAST) [SFK+10].
Vertices are proteins and edges are predicted physical inter-
actions between them. For each species, different thresh-
olds on the accurateness of the prediction were applied,

ranging from 0.4, 0.5, 0.6 to 0.7. The retrieved graphs have
from 2k to 10k vertices, and from 2k to 89k edges, with
average degrees ranging from 1.3 to 15. PPIs belonging to
the same species were then merged into a single benchmark
to be indexed. The obtained benchmarks have from 13k to
21k vertices, and from 39k to 260k edges.

We also included in the benchmark the standard
database for Antiviral Screen(AIDS) [ci]. It consists of 40k
chemical structures representing small molecules. Vertices
are atoms and edge are the chemical bounds linking them.
Vertex labels represent atomic elements, and there are a to-
tal of 62 distinct elements. The average number of vertices
per graph is 44.98, and the average degree is 4.17.

We conducted a set of experiments over the graph
databases described above. We indexed each database us-
ing labeled paths up to length 4, so that each index MT-
MDD is defined over 5 variables. Then, for each collection,
we obtain the size of the index MTMDD for all possible
variable orders.

Figure 1 reports the results for the R1 question on the 6
benchmarks. Each dot represents one of the 120 possible
variable orders. Dots are colored by their respective strat-
ification induced by the level of the identifier variable. In
each stratum, a dashed line represents the trend of the rela-
tion between the SOE metric and the final DD size. The
number indicates the value Spearman’s correlation coef-
ficient. We can observe that the metric has medium-to-
strong anticorrelation values in all stratum except for the
one where the identifier is positioned at the bottom, whose
sizes are almost insensible to the reordering of the label
variables. The figure shows a very positive result, because
it shows that a heuristic that maximizes the SOE metric has
an high chance of selecting a good order that minimizes the
DD size. Moreover, the cross on each stratum identifies the
ordering that would be selected by the proposed heuristic
EntropyHeu when fixing the position of the identifier vari-
able.

Figure 2 shows the results for the R2 question on the
effectiveness of the EntropyHeu heuristic on the 6 bench-
marks. Relative DD sizes are shown on the y-axis, while
the x-axis has no meaning (it is only used for visualization
purposes to separate the dots). The green cross identifies
the relative DD size of the selected order, while the blue
bar identifies the average size that would be obtained by
taking an order randomly among the possible 120 orders.
We can observe that the greedy heuristic that follows the
metric SOE is actually capable of selecting almost-optimal
orders in all the tested cases, showing the effectiveness of
the proposed information-based strategy.

5 Discussion and conclusions
In this paper, we extended the approach proposed
in [LBBG21] investigating how the MTMDD variable or-
der may affect the performance of such an approach in
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Figure 1: Spearman’s correlation and trend lines of the SOE metric value w.r.t. the DD sizes, divided by sample strata. The
black cross on each strata identifies the order that is selected by EntropyHeu.
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Figure 2: Relative position of the variable order selected by
EntropyHeu among all the other possible orders.

terms of memory consumption. To achieve this task we
first proposed the new metric SOE based on the Shan-
non entropy which experimentally showed a medium-to-
strong anticorrelation with respect to the DD size encod-
ing the graph indexing. Then we developed the sub-
optimal heuristic EntropyHeu inspired to the information
gain which is able to derive a variable order comparable
with the theoretical-optimal order derived by the SOE met-
ric. As a future extension, we will apply the EntropyHeu
heuristic on a bigger set of benchmarks coming from dif-
ferent research fields and we will evaluate its performance
by increasing the length of labeled paths.
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