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Abstract. Real-time forecasting of blood glucose (BG) levels has
the potential to drastically improve management of Type 1 Diabetes,
a widespread chronic disease affecting the metabolic system. Most
notably, if hypo or hyperglycemia episodes (i.e. glycemic excursion
below or above a safe range) could be accurately predicted, then the
patient could be timely warned, thus enabling proactive countermea-
sures to avoid these dangerous conditions. In this work, a novel per-
sonalized algorithm for the real-time forecasting of BG is developed
by combining the output of a shallow feed forward neural network
with an error imputation module composed by an ensemble of trees.
Past glucose readings as well as insulin, meals and work/sleep time
information are carefully handled to train and boost the prediction
performance of the algorithm. The root mean square error over the 6
subjects achieves a mean value of 18.69 mg/dL and 32.43 mg/dL for
30- and 60-minute prediction horizon respectively.

1 INTRODUCTION
Type 1 diabetes (T1D) is a metabolic disease characterized by the
destruction of the pancreatic cells responsible for insulin production
and thus resulting in an impaired Blood Glucose (BG) homeosta-
sis. Diabetes treatment relies on external insulin injection aimed at
maintaining BG levels within a physiological range [1], since poor
BG regulation is responsible of comorbidities and reduced life ex-
pectancy [2]. In particular, concentrations below or above the normal
range (called hypo- and hyper-glycemia respectively) can either rep-
resent an immediate threat to patient safety or could cause severe
long-term complications.

Measures to mitigate/avoid these conditions include the admin-
istration of exogenous insulin to reduce hyperglycemic excursion
or the consumption of fast-acting carbohydrates for hypoglycemic
events. Unfortunately, both insulin injection and carbohydrates con-
sumption affects BG only after a considerable amount of time: 45
minutes for insulin and at least 15 minutes for carbohydrates.

Therefore, accurate BG prediction would be of paramount impor-
tance to enable timely corrective actions and thus ensure successful
BG control. This holds true both for standard therapy, where correc-
tive actions are manually performed by patients, and in automated
and semi-automated systems such as an artificial pancreas [1].

Nevertheless, BG prediction is by no mean a trivial task. BG con-
centration is the result of complex non-linear dynamical interaction
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of multiple physiologic subsystems and is influenced by several fac-
tors, often hard to measure. They include timing and magnitude
of carbohydrates consumption, protein and fat content of the meal,
length, intensity and even type (aerobic vs anaerobic) of physical ex-
ercise, stress, illness or menstrual cycle. Furthermore, the modeling
of BG dynamics is hindered by the large variability in the physi-
ological metabolic response of different individuals. For these rea-
sons, non-linear and personalized models can represent one of the
best options to address the task. The introduction of continuous glu-
cose monitoring (CGM) sensors in T1D care has encouraged the use
of data-driven models based on past BG readings, whereas the fur-
ther availability of data offered by infusion pumps and fitness bands
opened the possibility of using exogenous inputs as additional fea-
tures for describing the model [15, 3].

Over the last two decades, several non-linear algorithms have been
tested in this framework, including support vector machine [4], gaus-
sian process regression [14], random forest (RF) [5] and several kinds
of neural networks (NN) [17, 10, 16, 9], up to deep-learning ap-
proaches like long short-term memory networks [13] and convolu-
tional NN [6]. While some works assessed that only past CGM in-
formation is actually useful to describe an accurate model [6, 13, 8],
many others claims that exogenous inputs play an important role in
describing BG dynamics. These extra features include time of the
day, insulin administration, food intake, energy expenditure, lifestyle
and emotions [5, 4, 6, 10, 18].

Up to the present, none of the these models has stand out from the
others in terms of prediction accuracy. This consideration lead our
group to focus more on feature manipulation, selection and hyper-
parameters optimization and to explore the possibility of combining
different kinds of non-linear learners. In conclusion, the aim of our
work is to synthesize an accurate model of BG dynamics by starting
from a simple, feedforward NN and to investigate:

• the impact of hyperparameters optimization and feature selection;
• the improvement achievable by combining the NN with an error

imputation module (EIM) based on a regression trees ensemble.

2 DATASET
Our study is based on the real patient data provided by the
OhioT1DM Dataset, described in detail in [7]. In its 2020 update,
six new patients are introduced in the dataset, with roughly 8 weeks
of data each (6 weeks of training set, 10 days of testing set). Each
of them wore a CGM device (Medtronic Enlite CGM sensor), and
an insulin pump (Medtronic 530G or 630G). Daily life-events (e.g.
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work/sleep, exercise) are reported via smartphone app while other
physiological data (e.g. skin temperature) are provided by using Em-
patica Embrace fitness wristbands. We will work exclusively on these
six new subjects.

Some of these signals are quasi-continuously measured, like
CGM, acceleration or basal insulin. Some others are impulse-like,
e.g. self-monitoring BG or meal consumption, which are provided
only a few number of times along the day. Some others, like work
intensity or sleep quality, are instead defined for time windows of the
order of some hours.

Some of the impulsive-like features, e.g. insulin boli, have an im-
pact on glucose dynamics that could last up for several hours. In
order to include this information in the framework of feedforward
NNs, which have no memory about the dynamics of inputs, we had
to rely on new features. We described the insulin-on-board (IOB) by
convolution of insulin boli and basal with a 6 hours activity curve,
whereas the convolution of consumed carbohydrates with an absorp-
tion curve (different for slow- and fast-acting carbohydrates) returned
the carbohydrates-on-board (COB). These two variables carry infor-
mation about the dynamics of slow insulin absorption and carbohy-
drates slow impact on BG, hence they are suitable for being used
with feedforward NNs. In a similar way, we described the physical-
exercise-on-board by low-pass filtering with second order transfer
function the physical activity intensity.

We also introduced the slope of CGM, computed by using the last
2 hours of readings, since the trend of the glycemic profile resulted
to be significantly correlated to future CGM readings in the train-
ing set. Other tested features include daytime, time and amount of
last carbohydrates intake and several filtered version of the original
signals.

3 METHODS
As shown in Figure 1, the proposed model is composed by two parts.
The first one is a shallow NN, which is the main predictor. It is trained
to predict future BG values with a certain prediction horizon (PH).
The second predictor is based on an ensemble of trees. It is called
error imputation module, since it is trained to predict the error that
is committed by the shallow NN. Finally, as shown in Figure 1, the
prediction of the proposed algorithm is obtained by combining the
output of the shallow neural network CGMs(t+PH) with the out-
put of EIM, ê(t + PH), to have an accurate value for the expected
glucose concentration.

Figure 1: Complete architecture of the predictive model. Variable
CGMs(t+ PH) is the original prediction, CGMc(t+ PH) is the
corrected prediction and ê(t+ PH) is the predicted error.

3.1 SHALLOW NEURAL NETWORK
The feature set for the shallow NN is manually determined on a pop-
ulation level, i.e. by looking for a unique set of feature which can be

used by all subjects. The first criterion for feature selection consists
in excluding all those features that presents too many missing val-
ues in the training set and hence cannot be considered reliable. For
instance, COB was discarded because, in some subjects, the infor-
mation about meal is missing for a large part of the training set (e.g.
subject 567 reported only 31 of the expected 141 meals). A second
criterion consists in excluding the features that are expected to have
a negligible impact on prediction accuracy, e.g. the state of illness
or work. This selection was performed with domain experts and by
means of some preliminary evaluation on the training set. The se-
lected features still presented many missing values that could hinder
the training procedure. Thus we performed, exclusively on the train-
ing set, a first order interpolation on any gap of samples shorter than
30 minutes. Finally, we investigated how many past CGM readings
should be used as inputs in order to improve model accuracy. To this
purpose we performed a bayesian optimization [12], using 70% of
the data in the original training set for training and the remaining
30% for validation. The result was that using the last 16 CGM in-
stants (corresponding to the last 1 hour and 20 minutes of readings)
leads to the optimal prediction performances in the six subjects. In
conclusion, the resulting feature pool we adopted included present
and past CGM readings, CGM slope and IOB.

Similarly, we determined the number of hidden layers and num-
ber of neurons in each layer with an exploratory optimization, which
was also performed via bayesian optimization and using the same
training/validation split we employed for feature selection. The best
performances on the validation set were found when using a single
hidden layer with a reduced number of inner nodes (only 5).

While the architecture of the net was optimized on a population
level and it will be the same for every subject, the weights of the net
were trained individually for every subject, meaning that the result-
ing model is tailored on each of them. The shallow net is trained on
the whole original training set, with its target being either the 6- or
12-steps ahead prediction of CGM, i.e. prediction horizons of 30 and
60 minutes, respectively. Inputs and targets of the net are normalized
by the mean and standard deviation computed on the training set.

3.2 ERROR IMPUTATION MODULE

We noticed that the prediction of the main NN is affected by a large
error when abrupt changes occur in its inputs. For instance, consecu-
tive CGM readings showing a large difference in values are often as-
sociated with poor BG predictions. However, other explanatory fac-
tors for the prediction error could be found in those features which
were not used by the shallow NN. The key idea behind the EIM is
to provide an estimate ê(t + PH) of the true error, e(t + PH), af-
fecting the prediction of the shallow net. The first step to build this
module is to create a new pool of feature, named Corrective Fea-
ture Set, containing the first order differences, at several time lags,
of: CGM, IOB, COB, sleep/work period, skin temperature and ac-
celeration data. Then, to take into account the large inter-individual
variability, a feature selection step (based on ReliefF [11]) is ap-
plied to the Corrective Feature Set. Then, only the features with
highest ranks are used to train the model. A further level of in-
dividualization is achieved by optimizing several hyperparameters.
For each subject, a bayesian optimization procedure returns the best
method to train the ensemble of trees (i.e., Bagging or Boosting),
the best number of trees (searched among the range {10,500}), the
best number of leaves for each tree (searched among the log-scaled
range {1,max(2,number of training sample/2)}), the best tree-depth
(searched among the log-scaled range {1,max(2,number of train-



Figure 2: 30-minute prediction for subject 544. The three curves represent real CGM data (blue line), the prediction with CGM-NN (red line),
and the prediction with NN-EIM (green line).

ing sample-1)}), the best learning rate (among the log-scaled range
{0.001,1} if boosting method is chosen). Both the feature selection
and the hyperparameters optimization exploits the training set only.

3.3 BENCHMARK NEURAL NETWORK
The effectiveness of the proposed approach is assessed by comparing
the predicted profiles with the ones obtained by a benchmark predic-
tor: a shallow neural network based on CGM data only (CGM-NN).
This network resorts the structure of the main predictor (i.e. a single
hidden layer with 5 inner nodes) but it exploits past CGM data only
(16 samples) as input features. This model will also be personalized
for each patient.

4 METRICS
The accuracy of the predicted profiles is evaluated by using four met-
rics. The Mean Absolute Error (MAE) is defined as:

MAE =
1

N

N∑
t=1

(y(t)− ŷ(t|t− PH))

where PH is the prediction horizon, y(t) is the current CGM read-
ing, N is the length of the whole signal y and ŷ(t|t−PH) is the the
PH-steps ahead prediction using the information available up to in-
stant t. Similarly we can define the Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

N

N∑
t=1

(y(t)− ŷ(t|t− PH))2

and Coefficient of Determination (COD):

COD = 100 · (1− ||(y(t)− ŷ(t|t− PH))||22
||(y(t)− ȳ(t))||22

)

where ȳ(t) is the average value of y. COD counts for the variance
explained by the predictive model with respect to the total variance
of the signal. Its maximum value is 100%.

The delay existing between the target signal and the predicted one
can be computed as the temporal shift that minimizes the square of
the mean quadratic error between these two signals:

delay = arg min
j∈[0,PH]

[ 1

N

N−PH∑
t=1

((ŷ(t|t− PH) + j)− y(t))2
]
.

5 RESULTS
Since the shallow net is initialized with random weights, results will
be reported in terms of mean and standard deviation of the various
metrics on 10 different initialization of the algorithm.

We compared two models: one is the benchmark, shallow NN
using exclusively past and present CGM readings (CGM-NN); the
other is the shallow net employing the Predictive Feature Set and
the error imputation module (NN-EIM). Table 1 and Table 2 reports
the results obtained with these two models, on each subject, for 30
and 60 minutes prediction horizons respectively. The last row of the
tables averages the mean values of the metrics on every subject.

As aforementioned in Section 3.1, no kind of operation was per-
formed on the testing set in order to impute missing values. Table 3
reports the number of CGM samples available for each subject and
the number of those predicted by our CGM-NN and NN-EIM.

NN-EIM achieves better results on each subject for all the eval-
uation metrics, both for PH = 30 and PH = 60 minutes. On aver-
age, the RMSE improves from 19.50 mg/dL with CGM-NN to 18.63
mg/dL with NN-EIM on the 30 minutes PH (p-value=0.031) and
from 34.26 mg/dL with CGM-NN to 32.27 mg/dL with NN-EIM
(p-value=0.031). The p-values are computed with a Wilcoxon signed
rank test and show that the improvement, albeit small (∼ 5% in both
cases), is statistically significant with 1−α = 0.95 confidence level.

Figure 3 show the boxplots and scatter plots of the average RMSE
values for every subject, for a PH of 30 minutes (Figure 3a) and
60 minutes (Figure 3b). The color of the lines linking the scatter
plots indicates the magnitude of the difference in RMSE between
the two strategies: green-shaded lines mean an improved accuracy
from CGM-NN to NN-EIM; viceversa, the lines are red if model ac-
curacy worsen. Both for 30 and 60 minutes ahead predictions, the use



Table 1: Evaluation of RMSE, MAE, COD and delay (mean (± standard deviation)) with CGM-NN and NN-EIM on a 30 minutes PH.

Subj RMSE MAE COD delay
CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM

540 21.66 (±0.20) 20.42 (±0.27) 14.09 (±0.13) 12.81 (±0.14) 90.29 (±0.18) 91.58 (±0.22) 20 (±0.0) 15.0 (±0)
544 17.67 (±0.08) 16.50 (±0.22) 10.52 (±0.09) 9.57 (±0.13) 89.86 (±0.10) 91.33 (±0.24) 20.0 (±0.0) 15.0 (±0)
552 16.81 (±0.15) 16.51 (±0.12) 6.85 (±0.13) 6.51 (±0.07) 90.72 (±0.16) 91.38 (±0.12) 20.0 (±0.0) 17.5 (±2.6)
567 20.73 (±0.10) 20.18 (±0.14) 10.92 (±0.09) 10.19 (±0.08) 86.89 (±0.13) 88.14 (±0.16) 20.0 (±0.0) 17.5 (±2.6)
584 22.44 (±0.14) 21.29 (±0.33) 12.77 (±0.14) 11.34 (±0.18) 87.69 (±0.15) 89.71 (±0.32) 25.0 (±0.0) 25.0 (±0.0)
596 17.71 (±0.29) 16.89 (±0.24) 10.93 (±0.08) 10.09 (±0.15) 88.28 (±0.38) 89.53 (±0.30) 25.0 (±0.0) 20.0 (±0.0)
All 19.50 (±2.39) 18.63 (±2.22) 11.01 (±2.45) 10.08 (±2.10) 88.95 (±1.54) 90.28 (±1.37) 21.6 (±2.5) 18.3 (±3.7)

Table 2: Evaluation of RMSE, MAE, COD and delay (mean (± standard deviation)) with CGM-NN and EIM-NN on a 60 minutes PH.

Subj RMSE MAE COD delay
CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM CGM-NN NN-EIM

540 40.34 (±0.82) 37.69 (±0.60) 26.46 (±0.51) 23.83 (±0.36) 66.61 (±1.36) 71.53 (±0.91) 45.0 (±0.0) 40.0 (±0)
544 31.21 (±0.31) 28.74 (±0.32) 19.57 (±0.30) 16.61 (±0.21) 68.55 (±0.64) 73.90 (±0.60) 44.5 (±1.5) 27.0 (±2.58)
552 30.45 (±0.17) 29.56 (±0.23) 12.56 (±0.14) 11.89 (±0.18) 70.12 (±0.33) 72.93 (±0.43) 45.0 (±0.0) 40.0 (±0.0)
567 37.37 (±0.29) 36.28 (±0.40) 20.48 (±0.24) 18.65 (±0.12) 67.13 (±0.65) 62.70 (±0.83) 45.0 (±0.0) 41.0 (±2.1)
584 36.85 (±0.27) 33.84 (±0.26) 21.26 (±0.32) 18.37 (±0.18) 67.13 (±0.49) 74.52 (±0.40) 53.0 (±2.4) 46.0 (±2.1)
596 29.32 (±0.23) 27.51 (±0.57) 18.58 (±0.20) 16.74 (±0.25) 68.31 (±0.51) 72.53 (±1.15) 49.0 (±2.1) 42.5 (±2.6)
All 34.26 (±4.5) 32.27 (±4.25) 19.82 (±4.49) 17.69 (±3.87) 66.55 (±4.08) 71.35 (±4.36) 47.0 (±3.5) 39.4 (±6.4)

Table 3: Number of CGM samples available in the testing set of the
OhioT1DM Dataset 2020 and number of CGM samples predicted by
CGM-NN and NN-EIM.

Subj Available samples Predicted samples
PH=30 PH=60

540 2884 2610 2592
544 2704 2532 2514
552 2352 2061 2020
567 2377 2050 1996
584 2653 2206 2165
596 2731 2551 2521

of exogenous inputs and EIM results in a systematic improvement of
performances.

The RMSE of the NN-EIM ranges from 16.50 mg/dL up to 21.29
mg/dL with PH=30 for subject 544 and 584, respectively. This differ-
ence might be related to the occurrence of large oscillations in CGM
data which cannot be clearly explained by any input variable in the
dataset. Considering a PH = 30 min, the lowest improvement in terms
of RMSE is for subject 552 (16,81 mg/dL vs 16.51 mg/dL, CGM-NN
vs NN-EIM respectively). The largest one is for subject 540 (21.66
mg/dL vs 20.42 mg/dL, CGM-NN vs NN-EIM respectively). One of
the main reasons linked to this marginal improvement is the large
number of missing values in the testing set for some features (e.g.
acceleration and skin temperature).

Nevertheless, whenever the feature set is reliable — as for subject
544 in Figure 2 — the proposed algorithm (green line) reduces the
prediction delay as well as the error when CGM data show a positive
increment related to any external input (i.e. CHO ingested, in this
case). Furthermore, the use of lagged first order differences of past
CGM data provides a prediction which is more adherent to the target
CGM than the one obtained by CGM-NN. This is confirmed by an
enhanced COD for subject 552 (90,72% vs 91,38%, CGM-NN vs
NN-EIM and by the delay (20 min vs 17,5 min, CGM-NN vs NN-
EIM).

Same conclusions can be found by considering a PH = 60 min. As
before, the lowest improvement in terms of RMSE is for subject 552
(30,45 mg/dL vs 29,56 mg/dL, CGM-NN vs NN-EIM). The largest

is for subject 584 (36,85 mg/dL vs 33,84 mg/dL, CGM-NN vs NN-
EIM). The prediction capabilities of the proposed approach are also
confirmed by COD and delay, even when a marginal improvement
in terms of RMSE is found. In fact, for subject 552 we found the
COD for CGM only NN vs proposed algorithm is 70,12% vs 72,93%.
Delay is reduced at 40 minutes, by meaning that the prediction has a
useful time anticipation of 20 minutes.

(a) PH=30 minutes (b) PH=60 minutes

Figure 3: Boxplot and scatter plots of average RMSE obtained with
CGM-NN and EIM-NN on a 30 minutes (a) and 60 minutes (b) pre-
diction horizons.

6 CONCLUSIONS

In this work we presented a new approach for a real-time forecasting
of glucose levels based on a shallow neural network and an error im-
putation module (NN-EIM). Comparing the performance, at PH = 30
and PH = 60, of the novel algorithm vs CGM-NN, we demonstrated
that accurate feature manipulation and selection steps can effectively
improve the prediction accuracy and reduce the delay affecting the



predicted profile. However, the presence of many missing values in
some variables reduce the improvement brought by the proposed ap-
proach. Finally, a further development of this work is the investiga-
tion of patterns within the CGM time series and the inclusion of such
physiological priors into the proposed algorithm could results in im-
proved performance.
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M. Rigla, A. de Leiva, and M.E. Hernando, ‘Artificial neural network
algorithm for online glucose prediction from continuous glucose mon-
itoring’, Diabetes Technol Ther, 12, 81–88, (2010).

[11] M. Robnik-Sikonha and I. Kononenko, ‘Theoretical and empirical anal-
ysis of relieff and rrelieff’, Machine Learning, 53, 23–69, (2003).

[12] J. Snoek, H. Larochelle, and R.P. Adams, ‘Practical bayesian optimiza-
tion of machine learning algorithms’, Advances in Neural Information
Processing Systems, 4, 2951–2959, (2012).

[13] Q. Sun, M.V. Jankovic, L. Bally, and S. G. Mougiakakou, ‘Predict-
ing blood glucose with an lstm and Bi-LSTM based deep neural net-
work’, 2018 14th Symposium on Neural Networks and Applications
(NEUREL), 1–5, (2018).

[14] J. Valletta, A. Chipperfield, and C. Byrne, ‘Gaussian process modelling
of blood glucose response to free-living physical activity data in peo-
ple with type 1 diabetes’, Proceedings of the 31st Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 4913–6., (2009).
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