
Symbolic Fault Injection

Daniel Larsson and Reiner Hähnle

Chalmers University of Technology, Department of ComputerScience and Engineering
S-412 96 Gothenburg, Sweden,{reiner,danla }@chalmers.se

Abstract. Fault tolerance mechanisms are a key ingredient of dependable systems. In particular,
software-implemented hardware fault tolerance (SIHFT) isgaining in popularity, because of its
cost efficiency and flexibility. Fault tolerance mechanismsare often validated using fault injection,
comprising a variety of techniques for introducing faults into a system. Traditional fault injection
techniques, however, lack coverage guarantees and may failto activate enough injected faults. In
this paper we present a new approach calledsymbolic fault injectionwhich is targeted at validation
of SIHFT mechanisms and is based on the concept of symbolic execution of programs. It can be
seen as the extension of a formal technique for formal program verification that makes it possible
to evaluate the consequences ofall possible faults (of a certain kind) in given memory locations for
all possible system inputs. This makes it possible to formally prove properties of fault tolerance
mechanisms.

1 Introduction

One of the most common and important ways to ensure the dependability of com-
puter systems and to analyse their fault tolerance mechanisms isfault injection. This
includes a variety of techniques for deliberately introducing faults into a computer
system and monitoring the system’s behavior in the presenceof these faults.

From a methodological point of view, fault injection is an experimental technique
similar to testing: individual runs of a system are executed with input test data which
in the case of fault injection is additionally instrumentedwith specific locations for
fault injection.

During the last decadeformal methodswere increasingly used to ensure the ab-
sence of (or to detect the presence of) permanent software faults. Formal techniques
such as model checking [11], extended static checking [10],and deductive verifica-
tion [5] are able to find bugs or verify safety properties of industrial software. The
common advantage of these methods is that they aresymbolicand work on a logic-
based representation of software properties. In consequence, one single correctness
proof of a system property represents system runs forall admissible inputs.

Formal methods are not a replacement, but a complement of conventional soft-
ware testing, because they typically work on source or bytecode and do not cover
faults in machine code, compilers, or runtime environments. In order to verify the
latter, testing is indispensable. Formal methods are also too expensive (or unsuitable)
to cover all aspects of a system such as the user interface or I/O. For safety-critical
segments of source code, on the other hand, formal verification is an increasingly cost
efficient and extremely reliable alternative to testing [24, 2].

86 Daniel Larsson, Reiner Hähnle

In the existing approaches to formal software verification,a program is proven to
have certain properties under the assumption that no hardware faults occur (that are
not detected and handled by the hardware or the operating system) during execution
of the program. In other words, nothing is proven about the fault tolerance of the
program. This is clearly a limitation of formal methods in the area of safety-critical
systems.

The main contribution of this paper is to show that symbolic techniques such as
formal software verification can be extended to symbolic analysis of fault injection
and to software fault tolerance mechanisms. In contrast to conventional fault injec-
tion, this establishes the possibility toprove that a given fault tolerance mechanism
achieves the desired behaviour for all inputs andall modeled faults. In particular, it
is possible to guarantee that all injected faults are actually activated. Even when a
fault tolerance mechanism fails to contain the injected faults and, therefore, a proof is
not possible, the verification system allows to investigatethe effects of the introduced
faults. The method presented in this paper is applicable tonode-levelfault tolerance
mechanisms, i.e., mechanisms for achieving fault tolerance withing a single node (or
in an non-distributed environment).

To the best of our knowledge, this is the first presentation ofa formal verifica-
tion framework for software-implemented hardware fault tolerance (SIHFT). Related
work is discussed in Sect. 7. We call our approachsymbolic fault injection. It is based
on symbolic executionof source code [8], a technique where program execution is
simulated using symbolic representations rather than actual values for input data, and
the effect of program execution is expressed as logical expressions over these sym-
bols.

The central idea is to inject symbolic faults (representingwhole classes of con-
crete faults) during symbolic execution which then reflectsthe consequences of the
injected faults. This has been prototypically implementedand evaluated in a tool for
formal verification of (JAVA) software, the KeY [1, 5] tool.

The paper is organized as follows: in the following section we review SIHFT, our
main target application. We discuss our fault model in Sect.3. Readers unfamiliar
with formal verification find the necessary background in Sect. 4. The core of the
paper is Sect. 5, where we explain how symbolic fault injection is modeled and im-
plemented in the logic of the verification system. In Sect. 6 we present a case study
showing the potential of symbolic fault injection. We closewith related work, a dis-
cussion of the achieved results and future work.

2 SIHFT

It is impossible to guarantee that a given computer system isfree of faults. Even
using the best available techniques for manufacturing hardware components, the best
available processes for the design of the hardware and the software, and the best
available techniques for testing a system, it may still contain defects. Moreover, it is

Symbolic Fault Injection 87

impossible to guarantee that no transient faults occur during operation of the computer
system. Therefore, in order to construct dependable computer systems we need to
equip them with mechanisms for detecting and recovering from faults. Faults can
be classified into hardware and software faults. An orthogonal classification divides
faults into transient, intermittent, and permanent faults. In this paper the focus is on
transient hardware faults, specifically, bit-flips in data memory locations.

Fault tolerance mechanisms can be based on hardware (for example, redundant
components) or on software. From a cost perspective it is often beneficial to use
software-implemented fault tolerance whenever possible,because (i) commercial,
standardized components can be used; (ii) hardware redundancy can be avoided; and
(iii) high flexibility can be obtained.

The scenario, where mechanisms for handling hardware faults are implemented
in software, is called SIHFT (Software-Implemented Hardware Fault Tolerance) (for
example, [7]). Common SIHFT techniques include assertions, algorithm-based fault
tolerance (ABFT), control-flow checking, and data duplication and comparison. Other
examples are checksum algorithms like CRC (Cyclic Redundancy Check). We apply
our symbolic technique to the latter in Sect. 6 below.

Our method for formal verification in the presence of faults operates on the source
code level of high-level programming languages and hence isrestricted to software
mechanisms. The type of faults we tried to emulate so far are transient hardware
faults, specifically, bit-flips in the data area of memory (this is not an inherent limi-
tation: other kinds of faults could be modelled, see Sect. 8). SIHFT is a natural tar-
get application for our method. The fact that hardware-implemented fault detection
mechanisms rarely detect faults in the data area of the memory [4] further motivates
the choice of our fault model which is described in detail in the following section.

3 Fault Injection and Fault Model

The purpose of using fault injection is to provoke the occurrence of errors in a system
in order to validate the system’s dependability. Errors occur too infrequently during
normal operation of a computer system to be able to perform such a validation within
reasonable time.

Existing fault injection approaches can be classified into hardware-implemented
and software-implemented fault injection (SWIFI). Examples of the first are tech-
niques, where integrated circuits are exposed to heavy-ionradiation [16] or electro-
magnetic interference [15], and the injection of faults directly on the pins of an inte-
grated circuit [3]. Software-implemented fault injectioncan be further classified into
prototype-based [9] and simulation-based [14] fault injection. In the first case the ac-
tual computer system to be validated (or a prototype thereof) is running while faults
are introduced into the system through software. In the second case a simulation of
the system is used when the faults are introduced.

88 Daniel Larsson, Reiner Hähnle

A fault injection approach is based on afault modelwhich specifies the exact
kind of faults to be injected or emulated. In many fault injection approaches/tools
only single bit-flips are used since they are considered to beefficient in revealing
dependability weaknesses.

The next question to consider iswhereandwhenthe faults are to be injected. For
the purpose of evaluating the relative effectiveness of fault tolerance mechanisms on
different levels (hardware level, operating system level,and application level), it is
useful to be able to inject faults, with high precision, in specific parts of the hardware.
For example, faults might be injected into the MMU (Memory Management Unit)
to evaluate a system’s robustness against this kind of faults. When one is mainly in-
terested in evaluating the mechanisms on the application level, it is often sufficient
to inject faults in memory. It is also useful to be able to control when faults are in-
jected, i.e., how the faults aretriggered. Fault injections can be related to a certain
instruction being executed or a memory location being manipulated, or a fault can be
injected after a specified time.

The major weakness of conventional fault injection techniques is their lack of
coverage. For example, to evaluate the effect of a fault in a given memory location,
typically one bit or a few bits are flipped. But there is no guarantee that these partic-
ular faults will actually exhibit any defects present in thefault handling hardware or
software. In other words, using fault injection nothing isprovedabout the fault toler-
ance property of a system. Similar to ordinary testing, fault injection can only show
the presence of defects, not their absence.

Conventional fault injection techniques also suffer from other problems. Hardware-
implemented techniques require special hardware which is very difficult—sometimes
even impossible—to design for modern processors [9]. Thesetechniques are also not
easily ported to other platforms or expanded to new classes of faults. In the case of
techniques using heavy-ion radiation or electromagnetic interference it is difficult to
exactly trigger the time and location of a fault injection [13]. One source of problems
with existing SWIFI tools is the target system monitoring for detecting the activation
of faults and for investigating the exact effects of the faults [9]. Software solutions for
monitoring have an undesired impact on the target system behavior. Moreover, the
analysis of the huge amounts of monitor data is both difficultand time-consuming.
Another problem with existing SWIFI techniques is that a large proportion of the
injected faults are not activated, for example, faults injected into unused memory lo-
cations or faults placed in registers before the registers are written to [4].

The approach presented in this paper can be characterized assoftware-implemented,
simulation-based fault injection. In the experiments performed, the simulation con-
sists of the machinery available in the KeY tool for performing symbolic program
execution. The fault model so far consists of bit-flips. There are no inherent restric-
tions on the types of faults we can emulate; if a certain hardware part is explicitly
simulated as part of the verification, it is possible to emulate the effects of faults in
that part. It would also be quite easy to emulate software faults. Our approach works

Symbolic Fault Injection 89

on the source code level. We emulate transient bit-level faults in the data segment of
memory by manipulating the variables in the program, and we relate fault injection to
pseudo-statements instrumented into the source code and triggered during symbolic
execution.

4 Formal Methods

Formal methods comprise a wide range of techniques including black box approaches
such as specification-only or specification-based testcasegeneration. Here we con-
centrate onformal verificationof software. Among the various approaches to formal
software verification [1, 10, 11] we single out verification by symbolic program exe-
cution [8], because of its compatibility with the analysis of propagation of injected
faults through a program.

Our implementation platform is the formal software verification tool KeY [1, 5].
In its current version it can handle most of sequential JAVA and there is ongoing
work to deal with concurrency [18] and for support of the C language. KeY takes as
input a JAVA program (source code) and a formal specification of that program. The
combination of the program and the specification is combinedinto aproof obligation
expressed in JAVA Dynamic Logic (JAVA DL). JAVA DL is a typed first-order logic
(FOL) extended with a dynamic part that can handle JAVA programs.

The idea of verification by symbolic program execution is to use logic in order to
represent all possible values of locations in a program and to track their value updates
during execution. We illustrate the main ideas by an example.

pub l i c c l a s s C {
s t a t i c i n t a,b;

pub l i c s t a t i c vo id swap()
{

b = a - b;
a = a - b;
b = a + b;

};
}

Fig. 1.Theswap() method.

Theswap() method in Fig. 1 exchanges the values of the fieldsa andb of class
Cwithout the need for a temporary variable. Symbolic execution of the method would
start by assigning symbolic integer valuesi andj to fieldsC.a andC.b , respectively.
Since we want to analyseswap() for arbitrary valuesi andj we quantify universally

90 Daniel Larsson, Reiner Hähnle

over them. A total correctness assertion in the program logic used in the KeY system
[1] looks then as follows:

∀ int i; ∀ int j; ({C.a := i}{C.b := j}

〈C.swap(); 〉(C.a .
= j & C.b .

= i)) (1)

The universal quantifiers range over integer variablesi and j that are assigned to
the fieldsC.a andC.b as symbolic initial values. Variablesi and j are so-called
rigid variables whose value cannot be changed during the execution of a program
(roughly corresponding tofinal locations in JAVA). For a compilable JAVA program
p, a formula of the form “〈p〉post” expresses that every run ofp with the current
initial values terminates normally and afterwards the postcondition “post” is true.
In other words,p is totally correctwith respect to the given postcondition. If one is
merely interested inpartial correctness, the[]-operator can be used instead: “[p]post”
expresses thatif p terminates normallythen“post” will be true in the end state. In
formula (1) the postcondition expresses that the initial values of the fieldsC.a and
C.b have been swapped by stating that the value ofC.a now is equal to initial value
j and C.b is equal toi (we use the symbol.= to distinguish between equality in
formulas and assignment statements). In this way it is possible to formally specify
the functionality of a given method.

The translation into a logical framework makes it possible to reason formally
about a program. A universally quantified formula such as (1)is valid if and only if
the formula

{C.a := i}{C.b := j}〈C.swap(); 〉(C.a
.
= j & C.b

.
= i) (2)

is true for any possible interpretation ofi andj. The expressions in curly brackets are
called stateupdate. Let U = {loc := val} be such an update, whereloc is a location
(program variable, field or array access) andval is a side-effect free expression. The
semantics of an updated formulaUφ is to change the environment relative to which
φ is evaluated in such a way that the value ofloc becomesval and everything else
is unchanged. Hence, the meaning of formula (2) is: wheneverswap() is started in
an initial state whereC.a has valuei andC.b has valuej, thenswap() terminates
normally and afterwards the contents of the fieldsC.a andC.b is swapped.

The logic JAVA DL used in the KeY system provides symbolic execution rules for
any formula of the form “U〈ξ; ω〉post”, where ξ is a single JAVA statement andω
the remaining program.ξ is called the firstactive statementof the program, i.e., the
statement the rule operates on. JAVA DL rules such as (3) can be seen as an opera-
tional semantics of the JAVA language. Application of rules can then be thought of as
symbolic code execution. A program is verified by executing its code symbolically
and then checking that the FOL conditions after execution isfinished are valid. Dur-
ing proof search rules are applied from bottom to top. From the old proof obligation
(conclusion), new proof obligations are derived (premisses).

Symbolic Fault Injection 91

We give some examples of JAVA DL symbolic execution rules. Updates are used
to record the effect of assignment statements during symbolic execution:

⊢ {v := e}〈ω〉φ

⊢ 〈v = e; ω〉φ (3)

The symbol⊢ stands for derivability. The rule says that in order to derive the formula
in theconclusion(on bottom) it is sufficient to derive the formula in the singlepremiss
(on top). The idea is to simply replace an assignment with a state update. This rule
can only be used ife is a side-effect free JAVA expression. Otherwise, other rules
have to be applied first to evaluatee and the resulting state changes must be added to
the update.

The effect of an update is not computed until a program has been completely
(symbolically) executed. For example, after expanding themethod body ofC.swap()
and symbolic execution of the first two statements we obtain the following interme-
diate result:

⊢ {C.a := j}{C.b := i − j}〈method-frame(C()): b = a + b; 〉

(C.a
.
= j & C.b

.
= i)

During method expansion amethod frame, which records the receiver of the invo-
cation result and marks the boundaries of the inlined implementation, was created.
The updates ofC.a andC.b reflect the assignment statements that have been ex-
ecuted already. After executing the last statement and returning from the method
call the code has been fully executed. The subgoal reached atthis point is similar
to ⊢ {C.a := j}{C.b := i}〈 〉(C.a

.
= j & C.b

.
= i), where the updates are fol-

lowed by the empty program. Only now updates are applied to the postcondition
which results in the trivial subgoal⊢ j

.
= j & i

.
= i.

Below is another rule example, namely the rule for theif - elsestatement which
has two premisses. The rule is slightly simplified.

b
.
= TRUE ⊢ 〈p ω〉φ b

.
= FALSE ⊢ 〈q ω〉φ

⊢ 〈 if (b) p else q; ω〉φ

This rule shows that in contrast to normal program execution, in symbolic execution
even of sequential programs it is sometimes necessary to branch the execution path.
This happens whenever it is impossible to determine the value of an expression that
has an influence on the control flow. This is the case for conditionals, switch state-
ments, and polymorphic method calls, among others. The ruleabove is applicable if
b is an expression without side effects, otherwise other rules need to be applied first.

A problem occurs with loops and recursive method calls. If the loop bound is
finite and known, then one can simply unwind the loop a suitable number of times.
But in general one needs to apply an induction argument or an invariant rule to prove
properties about programs that contain unbounded loops. Both approaches tend to
be expensive, because they require human interaction. The automation of induction
proofs for imperative programs is an area of active research[26].

92 Daniel Larsson, Reiner Hähnle

5 Symbolic Fault Analysis

5.1 General Idea

Our plan is to extend the approach to formal verification of software sketched in the
previous section with the concept of symbolic fault injection. This makes it possible to
prove that a program with software-based fault tolerance mechanisms ensures certain
properties even in the presence of faults. Alternatively, one may calculate the conse-
quences of the introduced faults in terms of strongest postconditions. The realization
is based on the following two ideas:

– The source code is instrumented with pseudo-instructions of the form “inject(
location); ” that are placed where the faults are to be injected. The argument
location is the name of a memory location (local variable, field access, formal
parameter, etc.) visible at this point in the program. This makes it possible to
handle (symbolic) fault injectionuniformlyby symbolic code execution.

– Symbolic fault injection is realized by extending the symbolic execution mecha-
nism with suitable rules for theinject pseudo-instructions.

The examples given below are in JAVA since the current version of KeY handles
JAVA , but the principles given hold for any imperative language.

An injection of a symbolic fault causes a change in the JavaDLrepresentation of
the symbolic program state, and this state change corresponds to the consequences of
all the concrete faults that can appear during program execution and that are instances
of the symbolic fault.

Assume that we want to emulate the effect ofall possiblebit-flips in the memory
location that corresponds to a given variable. First we needto clarify what is meant
by “all possible” bit-flips. Is it the effect of all possiblesinglebit-flips or all possible
combinations of an arbitrary number of bit-flips (in the samememory location)? Con-
sidering a JAVA int (represented by 32 bits): there are32 different possible outcomes
in the first case, but232 in the second. Obviously, when trying to prove properties
about algorithms that can detect bit-flips, it is essential to distinguish between single
bit-flips (or, perhaps, a fixed, small number) and an arbitrary number of bit-flips. For
example, the CRC algorithm discussed in Sect. 6 can detect situations where one or
a few bits are flipped. Trying to prove the fault detection capability of such an algo-
rithm using the “arbitrary number of bit-flips” semantics ofthe inject statement
will not succeed. However, in other situations it might be desirable and possible to
prove properties for an arbitrary number of bit-flips. Our solution is to use two differ-
ent inject statements:inject(location) means that an arbitrary number of bits
in the memory location will be flipped, whileinject1(location) means that a
single bit is flipped. To model a situation where a fixed numbern of bits in a location
is flipped,inject1 is simply applied at that locationn times.

Symbolic Fault Injection 93

Another important question is whether the “no change” case is included in the
meaning of theinject /inject1 statements, i.e. whether the property we are try-
ing to prove should also hold for the case where no bits are flipped. As will be-
come apparent in Sect. 6, sometimes a semanticsnot including the “no change” case
is needed. Below we introduce different flavours of rules forhandling theinject
/inject1 statements covering both cases: one including the “no change” case and
the other one excluding it.

5.2 Rules

We need to add new rules to the JAVA DL calculus that handle theinject pseudo-
instructions. The rules for the cases when thelocation argument ofinject has
type booleanor byte are below. In the case ofboolean typed variables there is no
need to distinguish between single bit-flips and an arbitrary number of bit-flips as
they hold only one bit, however, the distinction between inclusion and exclusion of
the “no change” case is relevant, and the two rules are presented below (inclusion of
the “no change” case is indicated by appendingNC to the rule name).

booleanNC
⊢ {b := true}〈ω〉φ ⊢ {b := false}〈ω〉φ

⊢ 〈inject(b); ω〉φ

boolean
⊢ {b := !b }〈ω〉φ

⊢ 〈inject(b); ω〉φ
(4)

The first rule splits symbolic execution into two paths, where in exactly one of themb
is unchanged and in the other it is complemented. The second rule continues symbolic
execution with the value ofb complemented. Next we show the rule for an arbitrary
number of bit-flips in abyte variable. Only the “no change” version is shown.

byteNC
⊢ ∀byte i; {b := i}〈ω〉φ

⊢ 〈inject(b); ω〉φ
(5)

In this case the memory location can contain anybyte value after the injection. This
means that whatever program property that should be proved has to be proved for all
values of this variable. In logical terms it means that a universal quantification has to
be introduced. We do this by quantifying over a new logical variablei followed by an
update that assigns the value ofi to the locationb.

Finally, the rules for theinject1 statement onbytes and arrays ofbytes are
presented. Only the rules excluding the “no change” case is shown.

byte1
⊢ ∀ int j; 0 ≤ j ≤ 7 → {b := bˆ(1 ≪ j)}〈ω〉φ

⊢ 〈inject1(b); ω〉φ
(6)

After injection, the memory location can contain any value resulting from flipping
exactly one bit inb. The intuition behind the rule is that the variable isxored with the
masks,00000001, 00000010,. . . ,10000000 respectively. The rule for arrays ofbytes,

94 Daniel Larsson, Reiner Hähnle

byteArr1
⊢ ∀ int i; ∀ int j; 0 ≤ i < a.length & 0 ≤ j ≤ 7 → {a[i] := a[i]ˆ(1 ≪ j)}〈ω〉φ

⊢ 〈inject1(a); ω〉φ

Fig. 2. The inject1 rule for byte arrays.

pictured in Fig. 2, is similar but includes universal quantification over the array ele-
ments. The rule shown is a bit simplified since the real rule has to take the possibility
of a null reference into account. We created analogous rules for the other primitive
JAVA types, which are not presented here.

5.3 Example: Verification

We proceed to show by example how the rules for the pseudo-instruction inject
are used in practice. The examples are based on a simple JAVA class shown below.

c l a s s MyBoolean {
boolean v;
boolean myOr(boolean b) {

boolean t=b;
inject(t);
re turn t||v;

}
}

MyBoolean can be viewed as a wrapper forbooleanprimitive valuess. It contains a
booleanfield v that holds the value of aMyBoolean instance. It also has a method,
myOr, with obvious meaning. (The temporary variablet is unnecessary for the be-
havior of myOr. It is added for the presentations of the proofs below, as it makes it
possible to refer to the original value of the parameterb in an easy way.) The inter-
esting point is theinject statement that injects a fault into thebooleanargument
before the return value is computed. Attempts to prove thatmyOr has certain correct-
ness properties even in the presence of faults are shown below.

Symbolic execution and first-order logic reasoning as implemented in KeY is used
in the proof attempts. Note the use of rule (4) forinject(t) (marked with an aster-
isk on the right in Fig. 3 and Fig. 4). In the first example, shown in Fig. 3, an attempt
is made to prove that the method still has the semantics expected from logical or (the
variableresult in the proof stands for the return value ofmyOr): the postcondition
states that the return value ofmyOr is true if and only if one of the arguments is true.
This is impossible to prove due to the injected fault. We get four different branches in
the proof, one for each combination of values in fieldv and parameterb. All branches
must be proven in order to show the property. Due to space restrictions we only show
one of the branches that are impossible to prove, indicated by Γ in the antecedent
which abbreviates “v .

= false& b
.
= true”. The proof tree is shown in Fig. 3. As

expected, we end up with a sequent which is impossible to prove valid.

Symbolic Fault Injection 95

Γ ⊢ false

Γ ⊢ false ↔ true

Γ ⊢ false
.
= true ↔ (false

.
= true ∨ true

.
= true)

Γ ⊢ false
.
= true ↔ (v

.
= true ∨ b

.
= true)

Γ ⊢ {result:= false}〈〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {result:= v}〈〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ 〈return v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := false}〈return t ? true : v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := false}〈return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ {t := true}〈inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

∗

Γ ⊢ {t := b}〈inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Γ ⊢ 〈boolean t=b; inject(t); return t ‖ v;〉(result
.
= true ↔ (v

.
= true ∨ b

.
= true))

Fig. 3. Failed proof attempt: correctness property ofMyBoolean::myOr(). One of four branches in the proof:Γ

stands for “v
.
= false& b

.
= true”.

Now consider an attempt to prove something weaker, namely that myOr() re-
turnstrue whenever the fieldv wastrue. Again, only one of the four proof branches
is shown, but all are provable. We useΓ in the same way as above. The proof tree is
in Fig. 4. We end up with a sequent that is valid indicating provability. We showed the

[Γ ⊢ true]

Γ ⊢ false → false

Γ ⊢ false
.
= true → false

.
= true

Γ ⊢ v
.
= true → false

.
= true

Γ ⊢ {result:= false}〈〉(v
.
= true → result

.
= true)

Γ ⊢ {result:= v}〈〉(v
.
= true → result

.
= true)

Γ ⊢ 〈return v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := false}〈return t ? true : v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := false}〈return t ‖ v;〉(v
.
= true → result

.
= true)

Γ ⊢ {t := true}〈inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

∗

Γ ⊢ {t := b}〈inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

Γ ⊢ 〈boolean t=b; inject(t); return t ‖ v;〉(v
.
= true → result

.
= true)

Fig. 4. Successful proof: weakened correctness property ofMyBoolean::myOr(). One of four branches in the
proof:Γ stands for “v

.
= false & b

.
= true”.

formal proofs in some detail in order to give an impression how symbolic execution
of code and injected faults works. All proofs, respectively, proof attempts are created
by the KeY prover within fractions of a second and fully automatically.

96 Daniel Larsson, Reiner Hähnle

5.4 Example: Calculating Strongest Postcondition

Besides proving that a program has certain properties in thepresence of faults it is
possible to calculate the consequences of a fault in terms ofstrongest postconditions.
Below is a simple program containing aninject statement for which we calculate
the strongest postcondition.

i n t aMethod() {
i n t i = 0;
inject(i);
re turn i;

}

The calculation of the strongest postcondition of the program is shown below. Note
that aninject rule for int type variables similar to (5) is used.

⊢ ∃ int k; result
.
= k

⊢ ∀ int j; {result:=j}〈〉?

⊢ ∀ int j; {i:=j}{result:=i}〈〉?
⊢ ∀ int j; {i:=j}〈return i; 〉?

⊢ ∀ int j; {i:=0}{i:=j}〈return i; 〉?

⊢ {i:=0}〈inject(i); return i; 〉?

⊢ 〈 int i=0; inject(i); return i; 〉?

The symbolic execution tells us that after a fault injectionin variable i the return
value can be anyint value. The example is trivial and not very interesting in itself
but illustrates the idea: the symbolic execution makes it possible to analyse the con-
sequences of faults for all admissible inputs.

6 Case Study

We illustrate the application of symbolic fault injection to a realistic fault handling
mechanism: an implementation of the widely used CRC (CyclicRedundancy Check)
algorithm. CRC is a fault detection algorithm: it calculates a checksum on a block of
data. This checksum is typically appended to the data block before it is transmitted
and the receiver is then able to determine whether the data has been corrupted. The
basic idea behind CRC is to treat the block of data as a binary representation of an
integer and then to divide this integer with a predetermineddivisor. The remainder of
the division becomes the checksum. The kind of division usedis not the one found in
standard arithmetic but in so-called polynomial arithmetic. The property that makes
CRC so useful is that it minimizes the possibility that several bit-flips “even out” with
respect to the checksum and therefore go undetected. The algorithm fully utilizes the
number of bits used to represent the checksum. By choosing the divisor (also called
poly) carefully, the algorithm can detect all single bit-flips, all two-bit errors (up to a

Symbolic Fault Injection 97

certain size of the block of data), all errors where an odd number of bits are flipped,
and so-called burst errors (where a number of adjacent bits are flipped) up to a certain
number of bits depending on the size of the divisor.1

We describe briefly the implementation of the algorithm. We cannot use JAVA ’s
built-in division operation, because the block of data, viewed as an integer, in general
is far too big to store in a register; also, we need to use polynomial arithmetic. There-
fore, the data is fed step by step to a division register whilethe required operations
are applied to its content. In its simplest and least efficient implementation of the al-
gorithm the data is shifted bit by bit, while the most commonly used implementation
shifts the data one “register length” at a time and uses a lookup table. Below is an
example of a table-driven implementation in JAVA generated by the “CRC genera-
tor”.2 The block of data is here represented by an array ofbytes, which is given as
parameterbuf to the program. The method returns the computed CRC value.

s t a t i c byte compute(byte[] buf) {
i n t count = buf.length;
byte reg = (byte)0x0;
whi le (count > 0) {

byte elem = buf[buf.length-count];
i n t t = ((i n t)(regˆelem)&0xff);
reg <<= 8;
reg ˆ= table[t];
count--;

}
re turn reg;

}

The arraytable in the program above refers to an array of256 precomputedbytes
that allows to perform the division, shifting the block of data onebyte at the time
(instead of onebit at the time). It would be useful to prove formally that this method
has certain properties. Even though the theory behind the CRC algorithm is well
known, there is no guarantee that this particularimplementationof the algorithm is
free from errors, in particular, since concrete algorithmsare synthesized by a program
generator based on several parameters.

In the following we document an attempt to formally prove that the implementa-
tion above detects all single bit-flips. Detecting single bit-flips is something we expect
even the most simple checksum algorithms to manage, but nevertheless it is valuable
to formally prove that a given CRC implementation actually does this. More precisely,
the following should be proved. Assume one arbitrarybyte array of arbitrary length.
This array is duplicated, an arbitrary single bit-flip inoneof the arrays is performed,
and then CRC checksums for both arrays are computed. The two checksums should

1 For the algorithm and possible implementations see http://www.repairfaq.org/filipg/LINK/Fcrc v3.html.
2 http://members.cox.net/tonedef71/bodyjcrcgen.htm#output

98 Daniel Larsson, Reiner Hähnle

differ and the first step to prove this property is to create the test harness below. It is a
modified version of the CRC implementation with the following changes.

– All variables (exceptcount), including thebyte array constituting the input to
the algorithm, are duplicated. All statements acting on these variables are also
duplicated.

– An inject1 statement (described in Sect. 5.2) is added that injects a bit-flip
fault in one of the input arrays.

– Instead of returning the CRC checksum, this modified versionreturns the com-
parison of the two computed CRC checksums in form of abooleanvalue. That is,
the method returnstrue if the two checksums are equal (the fault isnot detected)
and false otherwise.

s t a t i c byte crcTest(byte[] buf1, byte[] buf2) {
inject1(buf2);
i n t count = buf1.length;
byte reg1 = (byte)0x0;
byte reg2 = (byte)0x0;
whi le (count > 0) {

byte e1 = buf1[buf1.length-count];
byte e2 = buf2[buf2.length-count];
i n t t1 = ((i n t)(reg1ˆe1)&0xff);
i n t t2 = ((i n t)(reg2ˆe2)&0xff);
reg1 <<= 8;
reg2 <<= 8;
reg1 ˆ= table[t1];
reg2 ˆ= table[t2];
count--;

}
re turn (reg1 == reg2);;

}

The reason for modifying the original program is to facilitate the proving process.
It could be argued that this modification might change the behavior of the original
program in an unintended way, e.g., that the checksum calculated for the non-faulty
array is not equal to the checksum calculated for the same array using the original
program. For this program, however, it is fairly easy to see that this is not the case. In
case of doubt, it is possible to formally prove this.

The next step is to express formally the property this program should have. The
proof obligation expressed in JAVA DL is presented below (7). The variableresult
stands for the return value of the method. For sake of claritysome parts dealing
with potentialNullPointerException s and similar are omitted. The variables
msg1lv andmsg2lv are used to quantify over all possible values of the input message

Symbolic Fault Injection 99

blocksmsg1 andmsg2. The precondition states that (the reference variables)msg1
andmsg2 do not refer to the same array, but that the arrays are identical. Note that
the[]-operator is used, i.e., proving termination is not part of the proof obligation (see
Sect. 4). The reason is that this makes it possible to apply a loop invariant rule; see
discussion below. Termination has been proven separately.

∀byte[] msg1lv; ∀byte[] msg2lv;

(msg1lv 6= msg2lv & msg1lv.length
.
= msg2lv.length

& ∀ int j; (j ≥ 0 & j < msg1lv.length → msg1lv[j]
.
= msg2lv[j])

→ {msg1 := msg1lv} {msg2 := msg2lv}

[Crc.crcTest(msg1,msg2);](result
.
= false))

(7)

When trying to prove properties about programs containing unbounded loops (like
thecrcTest() method), then either a loop invariant or induction must be used. We
chose to use an invariant of which a simplified version is shown below (8). The part of
the program preceding the while statement was symbolicallyexecuted. Then a loop
invariant rule was applied, which includes providing the actual invariant.

(inject ar elem < msg1.length − count → reg1 6= reg2)

& (inject ar elem ≥ msg1.length − count → reg1 .
= reg2) (8)

The integerinject ar elem results from the execution of theinject1 statement
and refers to the element in themsg2 array where the fault is injected. It is a skolem
constant originating from the universal quantification over the array elements used in
the rule forinject1 (see Fig. 2). In other words, the invariant has to hold for all
possible values ofinject ar elem.

After application of the loop invariant rule, the proof splits into three branches:
one where it must be proven that the invariant holds before the while statement starts
to execute, one where one needs to prove that (8) is indeed an invariant of the loop
body provided that the guard holds, and one where it must be shown that the proof
obligation (7) follows from the invariant and the negated loop condition. We proved
all three cases using KeY. Here is the summary of the overall proof that (7) holds after
execution ofcrcTest() .

1. The part of the program preceding the while statement was symbolically executed.
This is automatic.

2. The loop invariant rule was applied and the loop invariant(8) manually provided.
3. KeY’s automatic application of rules was restarted whichresulted in about2500

rule applications in less than8 minutes. The result was13 open goals, i.e., branches
of the proof that could not be proved automatically. In all open goals, the program
part of the proof obligation was completely (symbolically)executed, i.e., only
program-free FOL formulas remained.

100 Daniel Larsson, Reiner Hähnle

4. The13 open goals were proved by manual rule application. This is tedious, but
straightforward.

In summary, we proved formally that a certain implementation of the CRC fault
detection algorithm discoversall possiblesingle bit-flips in an arbitrarybyte array.
The proving activity was to a large extent automatic. It is straightforward to apply the
same methodology to related algorithms, now that a valid pattern of loop invariants
has been established.

7 Related Work

In [19] an approach for evaluating the system reliability with respect to bit-flip er-
rors using model-checking principles is presented. This isapplied to a software-
implemented mechanism that detect errors corrupting the control flow, a signature
analysis technique. A control flow graph of the considered generic target program,
which is a representative model over a general class of all possible applications (i.e.,
it covers all possible fault scenarios with respect to the fault model) is created. The
model checker SPIN is applied to the model and the fault detection mechanism in
order to investigate whether the detection mechanism detects all faults. Since the de-
scription of the approach in the paper is highly dependent onthe signature analysis
technique, it is hard to see to which degree it is possible to generalize it to other kinds
of fault tolerance mechanisms. Clearly, a necessary requirement is the ability to con-
struct an abstract model of an imagined target program that covers all possible fault
scenarios with respect to a considered fault model.

In several papers one specific fault tolerance mechanism is formally verified. In
most cases these are system-level (in contrast to node-level) mechanisms for dis-
tributed systems, e.g., the TTP Group Membership Algorithm. Some examples of this
line of work follow: in a paper by Bernardeschi et al. [6], a fault tolerance mechanism
called “inter-consistency mechanism”, a component of an architecture for embedded
safety-critical systems, was formally specified and verified using the model checker
JACK. The properties the mechanism should satisfy were expressed as temporal logic
formulas and the model of the mechanism was given as a Labelled Transition System
(LTS) which included faults that could affect the behavior of the mechanism itself. In
[25], a model of a startup algorithm for the Time-Triggered Architecture was proven
to have certain safety, liveness, and timeliness properties using model checking (the
SAL toolset from SRI). It is claimed that all possible failure modes were examined, an
approach the authors call “exhaustive fault simulation”. Afault-tolerant group mem-
bership algorithm of TTP was formally specified and verified using a diagrammatic
representation of the algorithm. The work is described in [21]. The PVS theorem
prover was used for the verification. Clock synchronizationalgorithms are an im-
portant part of distributed dependable real-time systems.The paper [23] describes
a formal generic theory of clock synchronization algorithms (that extracts the com-
monalities of specific algorithms) in the form of parameterized PVS theories. Several

Symbolic Fault Injection 101

concrete algorithms are formally verified with PVS using this framework. In [22], dif-
ferent aspects of formal verification of algorithms for critical systems are discussed.
As an example, the Interactive Convergence Algorithm (ICA)is proved to have cer-
tain properties using the EHDM system.

What distinguishes our approach from the mentioned papers is that we presenta
general frameworkfor analysis and formal verification ofexecutable implementations
(in contrast to abstract models) of fault tolerance mechanisms.

Finally, it should be mentioned that symbolic fault injection has been used in
a method for calculating thecoverage factor, i.e., the proportion of faults that are
actually handled by a system [17].

8 Discussion and Future Work

Traditional fault injection techniques suffer from a number of drawbacks, notably
lack of coverage and failure to activate injected faults. Inthis paper we presented a
new approach called symbolic fault injection which is targeted at validation of SIHFT
mechanisms and is based on the concept of symbolic executionof programs.

It is an analytic approach in contrast to experimental evaluation done in conven-
tional fault injection. With symbolic fault injection it becomes possible to emulate the
consequences ofall possiblefaults in a certain memory location. All injected faults
are also activated, which is in general not the case with conventional fault injection.
Symbolic fault injection based on formal verification can beexpensive and requires
some expertise, but this is also the case with conventional fault injection. In particu-
lar, to investigate the consequences of an injected fault isdifficult and time consuming
when using conventional methods.

Our fault model so far consists of single bit-flips in memory locations. This is
achieved through pseudo-instructions added to the source code together with rules
for handling these pseudo-instructions during symbolic execution. We implemented
a prototype of our method based on the formal software verification tool KeY. We
showed the viability of the approach by proving that a CRC implementation detects all
possible single bit-flips. Clearly, this is only a proof of concept and a proper evaluation
with realistic industrial software needs to be done.

An argument that is often raised against the usage of formal methods is that formal
specifications of systems are normally not available and arevery time consuming to
create. Note that our approach is useful even without the availability of a formal
specification, because it can be used to compute the symboliceffect of faults in the
form of strongest postconditions (Sect. 5.4).

Limitations Our current implementation suffers from a number of limitations: since
our fault injection technique is simulation-based, no real-time properties can be eval-
uated with it. Formal verification of real-time systems is still an area of research. So
far we have not considered the injection of faults in pointer- or reference-variables,

102 Daniel Larsson, Reiner Hähnle

and we have only looked at faults in the data area of the memory, not the code area.
We also inherit a number of limitations from the underlying verification system. The
most important are that the program logic of the KeY system atthe moment cannot
handle multi-threaded programs or floating point data types. Research that overcomes
the first of these is under way [18]. A practical limitation isthat full automation can
only be achieved when bounds on loops and recursion are finiteand concrete. Other-
wise, induction or invariant rules with expensive user interaction is required. Again,
research to improve this situation is under way [20].

Future Work It would be interesting to generalize our approach to different fault
models and fault trigger mechanisms. This is principally possible by parameterizing
the total correctness modality〈p〉φ with additional parameters for a trigger condition
t, a symbolic faultinject , and a reset expressionR, wheret is a FOL formula,
inject is an inject pseudo-statement, andR is a state update (Sect. 4). The seman-
tics of the formula〈p | t | inject | R〉φ is the same as〈p〉φ, but before symbolic
execution of the next active statement it is checked whethert holds andinject is
inserted whenever it does. In addition, after symbolic execution of each statement the
updateR is added to the current environment. IfR is something like{b := false},
then it easy to emulate a stuck-at-zero fault.

We think that it is attractive to integrate our technique into a framework for de-
sign and assessment of dependable software such as Hiller et. al.’s [12]. Part of this
framework uses fault injection for error propagation analysis to find the locations in
the software where it is most effective to place fault handling mechanisms. We think
that our technique could be very useful in the error propagation analysis.

References
1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W. Mostowski, A. Roth,

S. Schlager, and P. H. Schmitt. The KeY tool.Software and Systems Modeling, 4(1):32–54, 2005.
2. P. Amey. Correctness by construction: Better can also be cheaper. CrossTalk Magazine, The Journal of

Defense Software Engineering, pages 24–28, March 2002.
3. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell. Fault injection

for dependability validation: A methodology and some applications.IEEE Trans. Softw. Eng., 16(2):166–182,
1990.

4. J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs,and G. H. Leber. Comparison of physical and
software-implemented fault injection techniques.IEEE Trans. Comput., 52(9):1115–1133, 2003.

5. B. Beckert, R. Hähnle, and P. Schmitt, editors.Verification of Object-Oriented Software: The KeY Approach,
volume 4334 ofLNCS. Springer, 2006.

6. C. Bernardeschi, A. Fantechi, and S. Gnesi. Formal validation of the GUARDS inter-consistency mechanism.
In M. Felici, K. Kanoun, and A. Pasquini, editors,Intl. Conf. on Computer Safety, Security and Reliability
(SAFECOMP), pages 420–430, 1999.

7. P. Bernardi, L. Bolzani, M. S. Rebaudengo, M. S. Reorda, and M. Violante. An integrated approach for in-
creasing the soft-error detection capabilities in SoCs processors. InIntl. Symp. on Defect and Fault Tolerance
in VLSI Systems (DFT), pages 445–453, 2005.

8. R. M. Burstall. Program proving as hand simulation with a little induction. InInformation Processing ’74,
pages 308–312. Elsevier/North-Holland, 1974.

9. J. Carreira, H. Madeira, and J. G. Silva. Xception: A technique for the experimental evaluation of depend-
ability in modern computers.Software Engineering, 24(2):125–136, 1998.

Symbolic Fault Injection 103

10. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended static checking for
Java. InProc. ACM SIGPLAN Conf. on Progr. Language Design and Implementation, Berlin, pages 234–245.
ACM Press, 2002.

11. K. Havelund and T. Pressburger. Model checking JAVA programs using JAVA pathfinder.Int. Journal on
Software Tools for Technology Transfer, 2(4):366–381, 2000.

12. M. Hiller, A. Jhumka, and N. Suri. PROPANE: an environment for examining the propagation of errors in
software. InProc. ACM SIGSOFT Intl. Symp. on Software Testing and Analysis, pages 81–85. ACM Press,
2002.

13. M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.IEEE Computer, 30(4):75–82,
1997.

14. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into VHDL models: The MEFISTO
tool. InProc. 24th Intl. Symp. on Fault Tolerant Computing, (FTCS-24), IEEE, Austin/TX, USA, pages 66–75,
1994.

15. J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J. Reisinger. Application of three physical
fault injection techniques to the experimental assessmentof the MARS architecture. InIFIP Working Conf.
on Dependable Computing for Critical Applications (DCCA-5), pages 267–287, Urbana-Champaign, USA,
September 1995. IEEE Computer Society.

16. J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-ion radiation to validate
fault-handling mechanisms.IEEE Micro, 14(1):8–23, 1994.

17. L. T. Klauwer. Application of Formal Methods to Fault Injection and Coverage Factor Calculation. Master’s
thesis, Chalmers University of Technology, Department of Computer Science and Engineering, Göteborg,
Sweden, 2006.

18. V. Klebanov, P. Rümmer, S. Schlager, and P. H. Schmitt. Verification of JCSP programs.Concurrent Systems
Engineering, 63:203–218, 2005.

19. B. Nicolescu, Y. Savaria, E. Aboulhamid, and R. Velazco.On the use of model checking for the verification
of a dynamic signature monitoring approach.IEEE Transactions on Nuclear Science, 52:1555–1561, Oct.
2005.

20. O. Olsson and A. Wallenburg. Customised induction rulesfor proving correctness of imperative programs. In
B. Beckert and B. Aichernig, editors,Proc. Software Engineering and Formal Methods, Koblenz, Germany,
pages 180–189. IEEE Press, 2005.

21. H. Pfeifer. Formal verification of the TTP Group Membership algorithm. InProc. FIP TC6 WG6.1 Joint Intl.
Conf. on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE
XIII) and Protocol Specification, Testing and Verification (PSTV XX), pages 3–18. Kluwer, 2000.

22. J. M. Rushby and F. von Henke. Formal verification of algorithms for critical systems.IEEE Trans. Softw.
Eng., 19(1):13–23, 1993.

23. D. Schwier and F. W. von Henke. Mechanical verification ofclock synchronization algorithms. InProc. 5th
Intl. Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS, pages 262–271. Springer-
Verlag, 1998.

24. A. E. K. Sobel and M. R. Clarkson. Formal methods application: An empirical tale of software development.
IEEE Transactions on Software Engineering, 28(3):308–320, 2002.

25. W. Steiner, J. Rushby, M. Sorea, and H. Pfeifer. Model checking a fault-tolerant startup algorithm: From
design exploration to exhaustive fault simulation. InThe Intl. Conf. on Dependable Systems and Networks,
pages 189–198, Florence, Italy, June 2004. IEEE Computer Society.

26. A. Wallenburg. Proving by induction. In B. Beckert, R. H¨ahnle, and P. Schmitt, editors,Verification of Object-
Oriented Software: The KeY Approach, volume 4334 ofLNCS, pages 453–480. Springer-Verlag, 2006.

