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Abstract. Centered around the data cleaning and integration research area, in this pa-
per we propose SjClust, a framework to integrate similarity join and clustering into a
single operation. The basic idea of our proposal consists in introducing a variety of clus-
ter representations that are smoothly merged during the set similarity task, carried out
by the join algorithm. An optimization task is further applied on top of such framework.
The framework exposes a wide number of application scenarios where it can be used
effectively and efficiently.

1 Introduction

Data cleaning and integration (e.g., [11, 5]) found on duplicate record identification (e.g.,
[6, 20]), which aims at detecting duplicate records that represent the same real-world entity.
This is becoming more and more relevant in emerging big data research (e.g., [21, 10, 18]),
as a plethora of real-life applications are characterized by the presence of multiple records
representing the same real-world entity, which practically plagues every large database. Such
records are often referred to as fuzzy duplicates (duplicates, for short), because they might
not be exact copies of one another. Duplicates arise due to a variety of reasons, such as
typographical errors and misspellings, different naming conventions, and as a result of the
integration of data sources storing overlapping information.

Duplicates degrade the quality of the data delivered to application programs, thereby lead-
ing to a myriad of problems. Some examples are misleading data mining models owing to er-
roneously inflated statistics, inability of correlating information related to a same entity, and
unnecessarily repeated operations, e.g., mailing, billing, and leasing of equipment. Duplicate
identification is thus of crucial importance in data cleaning and integration.

Duplicate identification is computationally very expensive and, therefore, typically done
offline. However, there exist important application scenarios that demand (near) real-time
identification of duplicates. Prominent examples are data exploration [8], where new knowl-
edge has to be efficiently extracted from databases without a clear definition of the infor-
mation need, and virtual data integration [5], where the integrated data is not materialized
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and duplicates in the query result assembled from multiple data sources have to be iden-
tified — and eliminated — on-the-fly. Such scenarios have fueled the desire to integrate du-
plicate identification with processing of complex queries [1] or even as a general-purpose
physical operator within a DBMS [4].

An approach to realize the above endeavor is to employ similarity join in concert with
a clustering algorithm [7]. Specifically, similarity join is used to find all pairs of records
whose similarity is not less than a specified threshold; the similarity between two records is
determined by a similarity function. In a post-processing step, the clustering algorithm groups
together records using the similarity join results as input. For data of string type, set similarity
join is an appealing choice for composing a duplicate identification operator. Set similarity
join views its operands as sets — strings can be easily mapped to sets. The corresponding
similarity function assesses the similarity between two sets in terms of their overlap and a
rich variety of similarity notions can be expressed in this way [4]. Furthermore, a number
of optimization techniques have been proposed over the years [15, 4, 2, 20, 14, 19] yielding
highly efficient and scalable algorithms.

The strategy of using a clustering algorithm strictly for post-processing the results of set
similarity join has two serious drawbacks, however. First, given a group of n, sufficiently
similar, duplicates, the set similarity join performs

(n
2

)
similarity calculations to return the

same number of set pairs. While this is the expected behavior considering a similarity join
in isolation, it also means that repeated computations are being performed over identical
subsets. Even worse, we may have to perform much more additional similarity calculations
between non-duplicates: low threshold values are typically required for clustering algorithms
to produce accurate results [7]. Existing filtering techniques are not effective at low threshold
values and, thus, there is an explosion of the number of the comparisons at such values.
Second, the clustering is a blocking operator in our context, i.e., it has to consume all the
similarity join output before producing any cluster of duplicates as result element. This fact is
particularly undesirable when duplicate identification is part of more complex data processing
logic, possibly even with human interaction, because it prevents pipelined execution.

In this paper, we propose SjClust, a framework to integrate set similarity join and clus-
tering into a single operation, which addresses the above issues. The main idea behind our
framework is to represent groups of similar sets by a cluster representative, which is incre-
mentally updated during the set similarity join processing. Besides effectively reducing the
number similarity calculations needed to produce a cluster of n sets to O(n), we are able
to fully leverage state-of-the-art optimization techniques at high threshold values, while still
performing well at low threshold values where such techniques are much less effective. In-
deed, the resulting composed algorithm is even up to an order of magnitude faster than the
original set similarity join algorithm for low threshold values. Moreover, we exploit set size
information to identify when no new set can be added to a cluster; therefore, we can then
immediately output this cluster and, thus, avoid the blocking behavior. Furthermore, there
exists a plethora of clustering algorithms suitable for duplicate identification and no single
algorithm is overall the best across all scenarios [7]. Thus, versatility in supporting a variety
of clustering methods is essential. Our framework smoothly accommodates various cluster
representation and merging strategies, thereby yielding different clustering methods for each
combination thereof.

This paper is the short version of the papers [13, 12], where we present the main results
of our research.



2 Fundamental Concepts and Background Knowledge

ncepts and definitions related to set similarity joins before present important optmization
techniques. Then, we describe a general set similarity join algorithm, which provides the
basis for our framework.

2.1 Basic Concepts and Definitions

We map strings to sets of tokens using the popular concept of q-grams, i.e., sub-strings of
length q obtained by “sliding” a window over the characters of an input string v. We (con-
ceptually) extend v by prefixing and suffixing it with q−1 occurrences of a special character
“$” not appearing in any string. Thus, all characters of v participate in exact q q-grams. For
example, the string “token” can be mapped to the set of 2-gram tokens {$t, to, ok, ke, en,
n$}. As the result can be a multi-set, we simply append the symbol of a sequential ordinal
number to each occurrence of a token to convert multi-sets into sets, e.g, the multi-set {a,b,b}
is converted to {a◦1, b◦1, b◦2}. In the following, we assume that all strings in the database
have already been mapped to sets.

We associate a weight with each token to obtain weighted sets. A widely adopted weight-
ing scheme is the Inverse Document Frequency (IDF), which associates a weight idf (tk) to
a token tk as follows: idf (tk)=ln(1+N/df (tk)), where df (tk) is the document frequency,
i.e., the number of strings a token tk appears in a database of N strings. The intuition behind
using IDF is that rare tokens are more discriminative and thus more important for similarity
assessment. The weight of a set r, denoted by w(r), is given by the weight summation of its
tokens, i.e., w(r) = ∑tk∈r w(tk).

We consider the general class of set similarity functions. Given two sets r and s, a set
similarity function sim(r,s) returns a value in [0,1] to represent their similarity; larger value
indicates that r and s have higher similarity. Popular set similarity functions are defined as
follows.

Definition 1 (Set Similarity Functions). Let r and s be two sets. We have:

– Jaccard similarity: J (r,s) = w(r∩s)
w(r∪s) .

– Dice similarity: D(r,s) = 2·w(r∩s)
w(r)+w(s) .

– Cosine similarity: C (r,s) = w(r∩s)√
w(r)·w(s)

We now formally define the set similarity join operation.

Definition 2 (Set Similarity Join). Given two set collections R and S , a set similarity func-
tion sim, and a threshold τ, the set similarity join between R and S returns all scored set
pairs 〈(r,s),τ′〉 s.t. (r,s) ∈ R ×S and sim(r,s) = τ′ ≥ τ.

In this paper, we focus on self-join, i.e., R = S ; we discuss the extension for binary inputs
in Section 2.3. For brevity, we use henceforth the term similarity function (join) to mean set
similarity function (join). Further, we focus on the Jaccard similarity and the IDF weighting
scheme, i.e., unless stated otherwise, sim(r,s) and w(tk) denotes J (r,s) and idf (tk), respec-
tively.

Example 1. Consider the sets r and s below



r = {A,B,C,D,E}
s = {A,B,D,E,F}

and the following token-IDF association table:

tk A B C D E F
idf (tk) 1.5 2.5 2 3.5 0.5 2

Thus, we have w(r) = w(s) = 10 and w(r∩ s) = 8; thus sim(r,s) = 8
10+10−8 ≈ 0.66.

2.2 Optimization Techniques

Similarity functions can be equivalently represented in terms of an overlap bound [4]. For-
mally, the overlap bound between two sets r and s, denoted by O(r,s), is a function that maps
a threshold τ and the set weights to a real value, s.t. sim(r,s) ≥ τ iff w(r∩ s) ≥ O(r,s). The
similarity join can then be reduced to the problem of identifying all pairs r and s whose over-
lap is not less than O(r,s). For the Jaccard similarity, we have O(r,s) = τ

1+τ
· (w(r)+w(s)).

Further, similar sets have, in general, roughly similar weights. We can derive bounds for
immediate pruning of candidate pairs whose weights differ enough. Formally, the weight
bounds of r, denoted by min(r) and max(r), are functions that map τ and w(r) to a real value
s.t. ∀s, if sim(r,s)≥ τ, then min(r)≤ w(s)≤max(r) [15]. Thus, given a set r, we can safely
ignore all other sets whose weights do not fall within the interval [min(r) ,max(r)]. For the
Jaccard similarity, we have [min(r) ,max(r)] =

[
τ ·w(r) , w(r)

τ

]
. We refer the reader to [16]

for definitions of overlap and weight bounds of several other similarity functions, including
Dice and Cosine.

We can prune a large share of the comparison space by exploiting the prefix filtering
principle [15, 4], which allows discarding candidate pairs by examining only a fraction of the
input sets. We first fix a global order O on the universe U from which all tokens are drawn. A
set r′ ⊆ r is a prefix of r if r′ contains the first |r′| tokens of r. Further, prefβ (r) is the shortest
prefix of r, the weights of whose tokens add up to more than β. The prefix filtering principle
is defined as follows.

Definition 3 (Prefix Filtering Principle [4]). Let r and s be two sets. If w(r∩ s) ≥ α, then
prefβr (r)∩prefβs (r) 6=∅, where βr = w(r)−α and βs = w(s)−α, respectively.

We can identify all candidate matches of a given set r using the prefix prefβ (r), where
β = w(r)−min(r). We denote this prefix simply by pref (r). It is possible to derive smaller
prefixes for r, and thus obtain more pruning power, when we have information about the set
weight of the candidate sets, i.e., if w(s) ≥ w(r) [2] or w(s) > w(r) [14]. Note that prefix
overlap is a condition necessary, but not sufficient to satisfy the original overlap constraint:
an additional verification must be performed on the candidate pairs. Finally, the number of
candidates can be significantly reduced by using the inverse document frequency ordering,
Oid f , as global token order to obtain sets ordered by decreasing IDF weight . The idea is
to minimize the number of sets agreeing on prefix elements and, in turn, candidate pairs by

For ease of notation, the parameter τ is omitted.
A secondary ordering is used to break ties consistently (e.g., the lexicographic ordering).



shifting lower frequency tokens to the prefix positions — recall that higher IDF weights are
associated to low-frequency tokens.

Example 2. Consider the sets r and s in Example 1 and τ = 0.6. We have O(r,s) = 7.5;
[min(r) ,max(r)] and [min(s) ,max(s)] are both [6,16.7]. By ordering r and s according to
Oid f and the IDF weights in Example 1, we obtain:

r = [D,B,C,A,E]
s = [D,B,F,A,E].

We have pref (r) = pref (s) = [D].

2.3 Similarity Join Algorithms: Definitions and Usage

Similarity join algorithms based on inverted lists are effective in exploiting the previous op-
timizations [15, 2, 20, 14]. Most of such algorithms have a common high-level structure fol-
lowing a filter-and-refine approach.

Algorithm 1 formalizes the steps of a similarity join algorithm. The algorithm receives
as input a set collection sorted in increasing order of set weights, where each set is sorted
according to Oid f . An inverted list It stores all sets containing a token t in their prefix. The
input collection R is scanned and, for each probe set r, its prefix tokens are used to find
candidate sets in the corresponding inverted lists (lines 4–10); this is the candidate generation
phase, where the map M is used to associate candidates to its accumulated overlap score os
(line 3). Each candidate s is dynamically removed from the inverted list if its weight is less
than min(r) (lines 6–7). Further filters, e.g., filter based on overlap bound, are used to check
whether s can be a true match for r, and then the overlap score is accumulated, or not, and
s can be safely ignored in the following processing (lines 8–10). In the verification phase,
r and its matching candidates, which are stored in M, are checked against the similarity
predicate and those pairs satisfying the predicate are added to the result set. To this end, the
Verify procedure (not shown) employs a merge-join-based algorithm exploiting token order
and the overlap bound to define break conditions (line 11)[14]. Finally, in the indexing phase,
a pointer to set r is appended to each inverted list It associated with its prefix tokens (lines 12
and 13).

Algorithm 1 is actually a self-join. Its extension to binary joins is trivial: we first index
the smaller collection and then go through the larger collection to identify matching pairs.
For simplicity, several filtering strategies such positional filtering [20] and min-prefixes [14],
as well as inverted list reduction techniques [2, 14] were omitted. Nevertheless, these opti-
mizations are based on bounds and prefixes and, therefore, our discussion in the following
remains valid.

3 Our Proposal: The Innovative SjClust Framework

We now present SjClust, a general framework to integrate clustering methods into similarity
joins algorithms. The goals of our framework are threefold: 1) flexibility and extensibility by
accommodating different clustering methods; 2) efficiency by fully leveraging existing opti-
mization techniques and by reducing the number of similarity computations to form clusters;
3) non-blocking behavior by producing results before having consumed all the input, prefer-
ably much earlier.



Algorithm 1: Similarity join algorithm
Input: A set collection R sorted in increasing order of the set weight; each set is sorted

according to Oid f ; a threshold τ

Output: A set S containing all pairs (r,s) s.t. Sim(r,s)≥ τ

1 I1, I2, . . . I|U|←∅,S←∅
2 foreach r ∈ R do
3 M← empty map from set id to overlap score (os)
4 foreach t ∈ pref (r) do // can. gen. phase
5 foreach s ∈ It do
6 if w(s)< min(r)
7 Remove s from It
8 if filter (r,s,M (s))
9 M (s) .os←−∞ // invalidate s

10 else M (s) .os = M (s) .os+w(t)

11 S← S∪Verify(r,M,τ) // verif. phase
12 foreach t ∈ pref (r) do // index. phase
13 It ← It ∪{r}

14 return S

(a) Representation details. (b) Similarity evaluation.

Fig. 1. Cluster representation.

The backbone of SjClust is the similarity join algorithm presented in Section 2. In particu-
lar, SjClust operates over the same input of sorted sets, without requiring any pre-processing,
and has the three execution phases present in Algorithm 1, namely, candidate generation,
verification, and indexing phases. Nevertheless, there are, of course, major differences.

First and foremost, the main objects are now cluster of sets, or simply clusters. Figure 1
illustrates strategy adopted for cluster representation. The internal representation contains a
list of its set element’s ids, an (optional) auxiliary structure, and the cluster’s complete rep-
resentation, a set containing all tokens from all set elements. A cluster exports its external
representation as the so-called cluster representative (or simply representative) (Figure 1(a)).
Representatives are fully comparable to input sets and similarity evaluations are always per-
formed on the representatives, either between a probe set and a cluster or between two clusters
(Figure 1(b)). In the following, we use the term cluster and representative interchangeably
whenever the distinction is unimportant for the discussion.

Figure 2 depicts more details on the SjClust framework. In the candidate generation phase,
prefix tokens of the current probe set are used to find cluster candidates in the inverted lists
(Figure 2(a)). Also, there is a merging phase between verification and indexing phases (Figure



(a) Candidate generation. (b) SjClust course of evaluation.

Fig. 2. SjClust framework components.

2(b)). The verification phase reduces the number of candidates by removing false positives,
i.e., clusters whose similarity to the probe set is less than the specified threshold. In the
merging phase, a new cluster is generated from the probing set and the clusters that passed
through the verification are considered for merging with it according to a merging strategy.
In the indexing phase, references to the newly generated cluster are stored in the inverted
lists associated with its prefix tokens. Finally, there is the so-called Output Manager, which
is responsible for maintaining references to all clusters —a reference to a cluster is added to
the Output Manager right after its generation in the merging phase (Figure 2(b)). Further, the
Output Manager sends a cluster to the output as soon as it is identified that no new probing
set can be similar to this cluster. Clusters in such situation can be found in the inverted lists
during the candidate generation (Figure 2(a)) as well as identified using the weight of the
probe set (not shown in Figure 2).

The aforementioned goals of SjClust are met as follows: flexibility and extensibility are
provided by different combinations of cluster representation and merging strategies, which
can be independently and transparently plugged into the main algorithm; efficiency is ob-
tained by the general strategy to cluster representation and indexing; and non-blocking be-
havior is ensured by the Output Manager. Next, we provide details of each SjClust component.

4 Conclusions and Future Work

In this paper, we presented SjClust, a framework to integrate clustering into set similarity
join algorithms. We demonstrated the flexibility of SjClust in incorporating different clus-
tering methods by proposing several cluster representation and merging strategies. SjClust is
an order of magnitude faster than the original set similarity join algorithm for lower thresh-
olds, which are often needed in practice to obtain accurate results in duplicate identification.
Furthermore, our proposal produces results earlier, thereby avoiding blocking behavior. We
described SjClust and its main components in detail. Future work is mainly oriented towards
enriching our framework with advanced features such as uncertain data management (e.g.,
[9]), adaptiveness (e.g., [3]), and execution time prediction (e.g, [17]).
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